Groups whose irreducible representations have degree at most 2
نویسندگان
چکیده
منابع مشابه
Computing Irreducible Representations of Groups
How can you find a complete set of inequivalent irreducible (ordinary) representations of a finite group? The theory is classical but, except when the group was very small or had a rather special structure, the actual computations were prohibitive before the advent of high-speed computers ; and there remain practical difficulties even for groups of relatively small orders ( á 100). The present ...
متن کاملSpanning trees whose stems have at most k leaves
Let T be a tree. A vertex of T with degree one is called a leaf, and the set of leaves of T is denoted by Leaf(T ). The subtree T − Leaf(T ) of T is called the stem of T and denoted by Stem(T ). A spanning tree with specified stem was first considered in [3]. A tree whose maximum degree at most k is called a k-tree. Similarly, a stem whose maximum degree at most k in it is called a k-stem, and ...
متن کاملIrreducible Representations of Diperiodic Groups
The irreducible representations of all of the 80 diperiodic groups, being the symmetries of the systems translationally periodical in two directions, are calculated. To this end, each of these groups is factorized as the product of a generalized translational group and an axial point group. The results are presented in the form of the tables, containing the matrices of the irreducible represent...
متن کاملSolvable groups whose character degree graphs have non-trivial fundamental groups
In this talk, we introduce the character degree graph of a finite group G. We will discuss various properties of this graph, and we will further discuss what graphs can occur as the character degree graphs of finite solvable groups. In particular, we focus on groups with characters of degree pq, pr, and qr, where p, q, and r are distinct primes. Although some group theory will be assumed, knowl...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2005
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2004.12.012